Monday, October 14, 2019
Using Alternative Materials In A Racing Car Engineering Essay
Using Alternative Materials In A Racing Car Engineering Essay Materials play a very important role in functioning of any Machine. The idea of using alternative materials in a racing car is often an option used by the designers to improve the overall performance of the car. But the growing research on new materials creates confusion for the Racing car designers. The failure of material plays the most significant role in any kind of loss in a racing car. Engineers design the car and select the material in such a way that, the materials is able to cope with all the forces acting on the car and also weigh as less as possible. The overall weight of the car is dependent on the properties of the materials. In this report an effort is made to identify these materials used in the current Formula 1 cars and suggest alternatives, which shall provide us a solution for the material selection criteria considering the cost, availability, environmental effect in manufacturing parts from this materials and also end of life issues of these materials. In this rep ort we are going to review the work done till the end of May on this project. An overview of the current materials used and the reasons for the selection materials for the various components of the formula 1 car is briefly described in this report. Introduction: Formula 1 is one of the most rapidly developing sport, as far as research and development is concerned. New technologies are discovered and used on the car every year in order to win the races. Materials are also an option for the designers to get the weight distribution of the car as desired. The weight of the car is dependent on the materials used for construction. FIA has its regulations on the minimum weight of the car that is 605 kg for the 2010 season. But using exotic materials designers can design the car for about 450 500 kgs. And the rest is used by ballast for improving the weight distribution of the car. Materials selection for a formula 1 car is one of the most significant decisions for the designer. It also reflects the sustainability of the materials with respect to environmental concerns. The four main factors upon which the designers relies when considering materials choice are the relationship between materials specifications and technical performance of the product, the economic performance of the product, the environmental performance of the product the practice of industrial design embedded in the product and its Functionality as told by Clark and Ashby. In formula 1 because of the high budgets the economic issue is not really big atleast with the major teams. Thus the designer has the liberty to use as exotic material as he wants for achieving the minimum weight of the car. Critical components such as engine, suspension, brakes, and wheels play a major part in the performance of the car. The materials to be selected for these components need a deep research on the forces and temperatures achieved in these parts. Reducing the overall weight of the car is not difficult. Designers achieve the overall weight of the car well below the minimum specified FIA limit. The main achievement for the designers is to get the overall weight distribution. But apart from these performance issues there are many other issues which need directive. FIA has banned certain materials such as non ferrous alloys and Berillium alloys for Health and Safety requirements. But because F1 is a glamorous sport with high budgets and speed, environmental concern due to materials used is least analysed. It is very important, that the materials to be used in the sport should be environmental friendly considering the LIFE CYCLE ANALYSIS, RECYCLING and THE AVAILABLITY OF THE MATERIALS IN FUTURE, etc. In this project an effort is made to analyse the current materials used with respect to these environmental issues and suggest alternatives. This project particularly aims at the F1 industry for the selection of alternative materials for specific components which can benefit them further. Use of CES software will be done, which is industry Standard software to select materials depending on their particular application of components. Although this project is more of a research project the outcomes from the project can be used for future F1 industry and also to the high end Motor industry as well as other motorsport sectors. The project aims at providing industry relevant solutions via research on the current materials being used and also on the future materials that can be used. With the help of the CES software we will be trying to find materials which can meet the requirements of the components and then with literature obtained from the books and journals we shall try to figure out the best possible materials for the use. Objectives: The Objectives of the project are shown below. Identification of some of the most critical parts in an F1 car. The functions of each critical component analysed in the car. Find the materials currently used for each component in the F1 industry. Use CES package based on function of component to determine alternative material for the same purpose. Evaluate materials against existing materials in terms of performance, cost and manufacturing feasibility, end of life issues and recycling. To produce a report that can act as a reference for selection of materials for F1 applications. Background: Formula 1 is the only automotive sport which brings revolutionary changes to the field of automotive racing. Over a period of years Formula1 has provided numerous technologies and advances in the field. The use of light weight aluminium back in 1970s to use of Carbon fibre in mid 1980s in the field of automotive racing, all was introduced by Formula 1. Thus it can be said that Formula 1 has a big influence over the automotive industry in terms of technologies. But sometimes, certain advantages can be gained similarly at a fairly less cost or by using materials which causes less damage to the environment. Also there is further a scope for the designers to further improve their car based on the performance provided by the materials used to make the car. Structure of report: In this report we will be covering the topics finished by now and a brief discussion of the work to be done in near future. Every topic of the report shall cover the objectives in parts. The critical parts of the car, their function and the materials currently used have been finished till now. These topics will be further explained in details. 2.0. Literature Review: 2.1. Introduction: F1 is developing rapidly, with increasing competition for higher performance and energy efficiency, new materials and processing techniques are required to underpin these developments. [5]. and also because of the industrial recession the competition has further intensified and the importance of selection of materials has grown even further more. The need for recognition of function of a component in order to provide the most technically advanced as well as economic means of meeting this functional requirements is becoming more vital, so that there can be a better communication between the design engineer and materials engineer. [4]. in todays world we have more materials then even before and thus the scope of innovation is immense. But in order to make this innovation a standard procedure is required which we are going to follow in this project. [2]. The references which exist on such a specific study tend to focus on individual material for a particular job. [1]. in this project I would like to count all the eligible materials for the various tasks and then compare them without limiting the factual data on each subject. Particularly in F1 there are mandatory rules and regulations which every racing team has to follow. Hence there is very little to choose from. [1]. But it is also very important to know how much of environmental effect this materials cause whilst in production. There are many materials which provide the optimum properties, but at a very high price. And there are many materials which provide less properties but at a very low price as compared. But as we know that in formula 1 cost is not the priority, performance is the main priority. [6]. Thus the materials selected should not sacrifice the performance in fact increase the performance at the same time trying to reduce the cost. In the initial days the chassis were made of steel, later it was made of aluminium. But now they are made out of carbon fibre and honeycomb material. [6]. and thus, as the time progresses the overall weight of car is decreasing, and at the same time performance is increasing. Thus the need is to decrease the weight and increase the performance. And as the technology progresses this need for lighter and more efficient materials further increases. [3]. 2.2. A brief overview of materials: 2.2.1. Aluminium and its alloys: Aluminium is one of the most common materials to be used in the Automotive Industry, as some of aluminium alloys provide tensile strength superior to those of low carbon steels at same time weigh 1/3 the weight of steel. 2024 is the primary structural aluminium alloy and has exceptional strength and stability at high temperature. It was exclusively used for Disc brake top hats and for aluminium flywheels. At high operating temperatures in the disc and the flywheels, 2024 is the most suitable aluminium alloy. 6061-T6 extrusions are used for joining pieces and for corners, most of the brackets are fabricated from this aluminium alloy. 7075 is the strongest and the stiffest of the commonly available aluminium alloys. It is the most suitable aluminium alloy for machining and is very commonly used for bushings, spacers, and machined suspension components as steering arms, antiroll bar and any straight suspension links. 2.2.2. Magnesium: For a low budget team Magnesium can be considered as the most common and strongest material. It has very good mechanical properties and stiffness. Magnesium alloys are considered to be the best suitable material for machining as compared to other metal materials. It possesses exceptional welding, forging and casting characteristic. It is also a very low density material. But Magnesium has a very high risk of fire. In the form of dust or powder, magnesium is a very dangerous material. Because of this the FIA has banned the use of Magnesium for particular uses. Magnesium also has a tendency to corrode form inside when exposed to salty air. Thus racing at the race tracks like monoco where the track is near the sea. Chances of corrosion are very high. With such high budgets, precision and accuracy, such a chance of using magnesium is avoided. 2.2.3. Titanium: From the past couple of decades, titanium has been the ace of material for race car designers. It delivers the strength of high alloy steels and the weight of aluminium. Even though the price of titanium is very high, as discussed before in Formula1cost is not issue and hence titanium is highly suitable. Oxides of titanium comprise about 0.5% of the earths crust thus making Titanium an exotic material. Titanium is exclusively used for making Forged hubs, brake disc top hats, tubular and sheet suspension linkage fabrications, threaded fasteners and Exhaust systems. Titanium is very resistant to Fatigue from vibration. Commercially pure titanium is probably the best bet for manufacturing F1 components. The exhaust made out of titanium are considerably lighter than 321 stainless steel and infinitely lighter than mild steel at the same time very much stronger at elevated temperatures and virtually fatigue proof. 2.2.4. Honeycomb material: Honey comb material is a fairly old material to be used in Motorsport industry. It was first used in 1950s. Honeycomb sandwich materials are generally composed of aluminium face skins bonded to a core of Hexagonal shaped formed from aluminium foil. It forms continuous shear webs between the face skins, resulting in light panels of exceptional stiffness which are capable of carrying extreme loads with very little deflection. The importance of honey comb was realised after 1966 when Ford used it in historic victory at the Le Mans in its MARK IV which was later called as Ford GT. Aluminium honeycomb installed with the cells longitudinally oriented makes the most efficient energy absorbing structure. But as time has progressed, aluminium honeycomb is replaced by fibreglass honeycomb. The advantages of this new hybrid honeycomb over aluminium honey comb are as follows. Composite face skins of honeycomb structure tend to localize the impact damage and also are very easy to repair. Hybrid honey comb has good characteristics for machining. Hybrid honeycomb material is corrosion proof, non flammable and nontoxic. Hence even by health and safety standards along with high strength and stiffness, they have replaced the traditional aluminium honeycomb material. 2.2.5. Composite materials: The use of high strength lightweight composite materials has brought a revolution in use of materials in industry. The era of composite materials in F1 was started by the McLarens team. They had formed the first formula 1 tub from a composite sandwich composed of face skins of aluminium sheet bonded to the core of edge grained BALSA wood called MALLITE. This resulted in a tub structure with high torsional stiffness. Composite materials are not new to the field of engineering. They were discovered way before the time. It is nothing but a combination of two or materials to form a third material with desired characteristics. Composite materials consist of fibres or filaments of an element whose fibres exhibit high tensile strength and lack rigidity. For instance, even wood is a composite material. The most common used composite material in todays world of Formula 1 is Carbon fibre. More than 95% of the McLarens F1 car is constructed in high performance advanced carbon epoxy composite ma terial. A formula 1 car consists of many components whose duty ranges. The bodywork required a very low mass and moderate stiffness material to the survival cell which requires an extremely high stiffness structure. This requirement is best fulfilled by the composite material. The composites used in F1 are supplied in prepreg form and they need to be vacuum bagged and then cured in an autoclave. This product then needs manual trimming and machining, and boding in order to form the final product. Thus we can say that the process is rather a labour intensive, time consuming and very expensive process. F1 is an industry where low volume and extremely high quality product is desired with huge budgets. Composite materials just fit right in the situation for a F1 car designer. Fibreglass is an example of a composite material which is not exactly expensive as compared to other composite materials. But it has a disadvantage of brittleness and is comparatively heavy. 2.3. Factors governing the Selection of materials in future: In a high end motorsport such as formula 1 there are numerous factors which need to be addressed while selecting a material. The sport as always is at the pinnacle of performance, but not environmentally. There are certain environmental factors which needs special attention and are briefly discussed in this topic. 2.3.1. Life cycle analysis. (LCA). Life cycle analysis is basically evaluation of a material throughout its life span. Life cycle analysis evaluates the material right from its manufacture to the recycling of the material. Evaluation is made on the basis of CO2 emissions, energy and cost of materials. Life cycle analysis will be a main consideration for all the materials to be selected in the future [1]. Because we are aiming at the F1 industry, where mass production is not the main concern, life cycle analysis will help us in comparing the materials which cost the minimum and would be low on energy and emissions throughout its life. The figure below shows the whole life cycle analysis process. Figure 1: life cycle analysis process. Figure 2: total life cycle assessment. Composite materials are very effective in terms of weight reduction [9]. But in terms of life cycle analysis more research is to be carried out about the effect of manufacturing and recycling composite materials [6]. We have some data regarding it. Some research papers conclude that materials like Balsa core and PVC foam sandwich has far better life cycle results as compared to super steel. 2.3.2. Recycling: When we consider composites in terms of recycling, the composite waste is a very interesting and in some ways very difficult. Composite waste consists of polymer with high performance, but it contains only 50-80% of recoverable energy of the polymer. Hence we can say that composite materials are better as recovered material rather than recovered energy. Also as per the research, long fibre waste has more useful characteristics when compared to short fibre composite waste. The most important factor for recycling of composite materials is the orientation of the fibre after it has been used. There are several techniques already invented for recycling of materials such as, Mechanical processing, thermal processing, fluidised bed process, pyrolysis processes etc [4]. It is therefore estimated that in the future there will be many more processes that shall be invented in order to reduce the landfill and the material wasted. These are the two main environmental issues which needs attention when selecting materials. Even thought they are not an essential part while selecting the material, as performance is the most important need in F1, it needs some attention to make the sport environmental friendly. 2.3.3. Safety Factors: It is very important that the material which is selected for the use in F1 cars is 100% a safe material and should not possess any danger even in the event of a high speed accident. The materials should not be poisonous in any form and also should not react with other materials. Because F1 is a high speed sport, it is very necessary that the material selected should be complied with high strength requirements of F1. 2.4. The critical components of Formula 1 car to be assessed in this project. 2.4.1. Engine: The FIA has many rules and regulations specifying the use of materials in the construction of an engine. The following the regulations. 1]. Minimum weight of 95 kg should be there for each 2.4 litre v8 engine. 2]. Engine blocks should be constructed from Forged aluminium alloys for weight reduction in comparison to steel. 3]. to limit the costs, FIA has banned the use of non ferrous materials in Engine block. 4]. Magnesium based alloys, Metal Matrix Composites (MMCs) and Intermetallic materials may not be used anywhere in an engine. 5]. Coatings are free provided the total coating thickness does not exceed 25% of the section thickness of the underlying base material in all axes. 6]. in all cases the relevant coating must not exceed 0.8mm. 7]. Pistons must be manufactured from an aluminium alloy which is either Al-Si; Al-Cu; Al-Mg or Al-Zn based. 8]. Piston pins, crankshafts and camshafts must be manufactured from an iron based alloy and must be machined from a single piece of material. Thus selecting a material for the engine has relatively less choices. In 1998 Mercedes Benz tried to use Berillium alloys in their engines. This gave them an additional advantage of weight loss and drastic performance gain. This also led Mikka Hakkinen to win the world title 2 times consecutively. But later FIA decided that Berillium alloys were too poisonous in large quantities and thus banned the use of it. Thus using the right materials at the very right place is what makes F1 engines so interesting for the designers. As Senior General Manager Engine Luca Marmorini of the Toyota Panasonic team said, In the engine we use almost every kind of material you can on a Formula 1 car, for example you can see aluminium made with complex casting techniques but you also see carbon material. It is very important to keep the centre of gravity of the engine very low so we tend to put the very light parts on the upper part and the heavy parts on the bottom. The exact materials used by the formula1 teams for year 2010 are given in the results and discussion section. http://a5.vox.com/6a00c22521b9fc549d00d4144481ad6a47-500pi Figure 3: F1 Engine block. 2.4.2. Bodywork: This is a very important part of an F1 car. The materials used for bodywork basically define the weight of the car. Over the years numerous materials have been tried on the bodywork of the F1 car. All the light and ultra strong materials are basically revolutionized after they have been used on an F1 car. The materials to be used here should possess the property of being very strong, light in weight and ability to transform in to the required shape which shall give the aerodynamic edge. In the 1960 light weight aluminium was the solution to bodywork. But then Aluminium honeycomb material was developed which was effectively used for another decade along ultra light aluminium sheets. But then in the mid 1980s carbon fibre was discovered. Initially it was only used by the high budget teams as the cost was too high at that time. But then as the time progressed, the price of carbon fibre has decreased considerably and thus used for about 80% of the construction of the car by almost every team. Honey comb structures are still used to meet the safety requirements. http://lotusenthusiast.net/wp-content/uploads/2009/10/F1R2.jpg Figure 4: F1 2010 Bodywork. 2.4.3. Fuel tanks: Fuel tank is a component of the car which needs exclusive safety features. They should weigh as less as possible, just like any other F1 component, but at the same time should be very strong and 100% leak proof. FIA has strong regulations on the manufacture of fuel tanks. They need to leak proof even in the case of accidents and designer need it to strategically placed, as it carries the weight of the fuel which can disturb the weight distribution of the car. Nowadays the fuel tanks are manufactured from a composite of Kevlar and rubber in F1, unlike aluminium welded fuel tanks in other low end motor racing. The combination of Kevlar and rubber provides an ultra light weight fuel tank which is very strong as well as puncture proof. The detail of manufacturer and composition is given in the results and discussion section. http://wheelnutsjournal.typepad.com/.a/6a0120a5145462970b0120a8cb6ecf970b-800wi Figure 5: ATL Fuel tank of 2010 F1 car. 2.4.4. Brakes: As we know this is one component of the formula 1 car where absolutely no compromise are allowed. A good braking car can result in 10% lap time savings. Thus the materials needed for brakes also need to be light, strong, withstand high temperatures and provide as much as friction possibly allowable for maximum braking. Cooling is a very important factor to be considered when selecting the brakes. There are certain materials which can withstand high temperatures but then struggle to cool down. This can prove to be very costly at end laps of the race. To avoid the problem of cooling, brake ducts are introduced on the cars. This allows simultaneous cooling of the brakes. Carbon fibre shield is used all round the brakes to avoid the heat transfer from brakes to wheel rims. Team like Red bull use the advanced technique of rapid prototyping materials. The big advantage of rapid prototyping is to eliminate the labour of making mould and thus saving time. From the olden days where steel brakes where used, to recent times where Carbon ceramic brake pads are used as the main force for braking. These are very high friction materials and provide the desired braking. Toro Rosso STR3 brake system Figure 6: Ferrari 2009 F1 Brakes of front right. 2.4.5. Wheel rims: Wheel rims rotate at a very high speed. Also high temperatures are achieved within the wheel rim. Thus the material to be selected needs to fulfil both the requirements as well as weigh minimum. The material selected which comes in contact with the tyre also influences the contact patch area between the tyre and the road surface. The FIA regulations state that the wheel rims should be made from single metal flow. This is very necessary and critical from strength point of view. Also there are no regulations on specific materials to be used. Wheel rims are basically manufactured by a company and then supplied to the individual F1 teams. In the recent times, Magnesium alloy is the best suitable material for the construction wheel rims. click to zoom Figure 7: Ferrari 2010 F1 Front right Wheel Rim. 2.4.6. Gear box: The gear box in a F1 car is similar to that of the road car in terms of functions and basic operations. But in an F1 car the gear box has to transfer nearly about 900 BHP to the rear wheels. These needs very strong clutch and Gearbox. Also the weight of the gearbox is very critical. The clutch of an F1 gear box just weighs close to 1.5 kgs, which is like 2-3 times lighter of that of a road car. Also the cover of the gear box casing is made from carbon fibre. Since the gear box is such a critical component of the car, special and exotic materials needs to be used which can satisfy the high demand of speed and temperatures achieved in the gear box. Gear box is a complex component in terms of construction and hence the materials to be used for it needs special ability of machining to the fine tolerance and shapes required. The figure below illustrated the complexity of shape and tolerance to be achieved in a gear box. http://v4admin.sportnetwork.net/upload/491/491_0_1210265553.jpg Figure 8: BMW SAUBER 2005 F1 Gearbox. 2.4.7. Suspension: Formula 1 suspension requires incredibly high stiffness at the same time high strength to withstand the bumps overcome by the car at speed of 200 mph. It is a very important component of the car as it directs the car understeer and oversteer characteristics. Also some high end formula team consider the aerodynamic forces due to the suspension linkage. Thus the materials to be selected for a Formula 1 cars suspension also need to fulfil the characteristics of machinability to the required aerodynamic shape along with very high stiffness and strength. Carbon fibre is proven to be a material with extremely high stiffness with very little weight and thus is used in the suspension of a F1 car. In the past times light weight aluminium was used for the suspension but did not prove to be as effective. Some designers have also tried using titanium for the suspension. But use titanium mainly depends on the budget of the team as it is a very exotic material as discovered before. The materials u sed by the F1 teams for 2010 season for suspension are further discussed in the results and discussion topic. The figure below demonstrates the suspension on a F1 car. http://www.virtualr.net/wp-content/gallery/1349/suspension21.jpg Figure 9: F1 suspension model. 2.5. Summary: Thus we have discussed the possible materials with their characteristics and past relevance to F1. The materials discussed are Aluminium, Magnesium, Titanium, Honeycomb material and Composite materials. We have also discussed the environmental factors such as Life cycle analysis and recycling to the safety factors required for the materials in order to be used in a high speed sport such as F1. Then finally we have discussed the components of the car which shall be taken into consideration for this project. They are Engine, bodywork, Fuel tank, Brakes, Wheel rims, Gearbox and suspension. The function and the criteria for the materials to be selected in this topic have been discussed briefly. 3.0. exPERIMENTAL / NUMERICAL METHODOLOGY A brief description of all the materials that can be considered for using in a Formula 1 car along with their structural properties is explained in the table exhibited below. The values of these structural properties of the materials are used to determine the materials to be used for the specified part. Also the cost of the materials is provided to check if the material is within the budget. Youngs Shear Breaking Fracture Thermal Cost Density Modulus Modulus Poissons Yield Stress UTS strain Toughness Expansion 3 -3/2 -6 MATERIAL Type ($/kg) (Ã Ã ² ,Mg/m ) (E , GPa) (G , GPa) Ratio (Ã Ã ® ) (Ã Ã ³ Y , Mpa) (Ã Ã ³ f ,Mpa) (Ã Ã ¥ f , %) (K c ,MN m ) (Ã Ã ¡ ,10 /C) Alumina (Al2O3) c 1.90 3.9 390 125 0.26 4800 35 0.0 4.4 8.1 Aluminium alloy (7075-T6) m 1.80 2.7 70 28 0.34 500 570 12 28 33 Beryllium alloy m 315.00 2.9 245 110 0.12 360 500 6.0 5.0 14 Bone (compact) n 1.90 2.0 14 3.5 0.43 100 100 9.0 5.0 20 Brass (70Cu30Zn, annealed) m 2.20 8.4 130 39 0.33 75 325 70.0 80 20 Cermets (Co/WC) ct 78.60 11.5 470 200 0.30 650 1200 2.5 13 5.8 CFRP Laminate (graphite) ct 110.00 1.5 1.5 53 0.28 200 550 2.0 38 12 Copper alloys m 2.25 8.3 135 50 0.35 510 720 0.3 94 18 Cork n 9.95 0.18 0.032 0.005 0.25 1.4 1.5 80 0.074 180 Epoxy thermoset p 5.50 1.2 3.5 1.4 0.25 45 45 4.0 0.50 60 GFRP Laminate (glass) ct 3.90 1.8 26 10 0.28 125 530 2.0 40 19 Glass (soda) c 1.35 2.5 65 26 0.23 3500 35 0.0 0.71 8.8 Granite c 3.15 2.6 66 26 0.25 2500 60 0.1 1.5 6.5 Ice (H2O) c 0.23 0.92 9.1 3.6 0.28 85 6.5 0.0 0.11 55 Lead alloys m 1.20 11.
Sunday, October 13, 2019
Comparing the View of Satan in Miltons Paradise Lost with Contemporary
Comparing the View of Satan in Milton's Paradise Lost with Contemporary Views of Satan In Milton's classic epic poem Paradise Lost the reader gains a judicious and even controversial vision of Satan as the protagonist of the epic. This is in direct contrast with our current idea and opinion of Satan as the leading nominal of evil and darkness. In Milton's Paradise Lost the Prince of Darkness is our hero. Perhaps not in the true sense of the word, but rather, he is the character that the reader is able to understand. The reader can see the "human" in the fallen angel, Lucifer. Satan and his seemingly righteous battle with God are the focus of the novel. He questions the orders from one who seems to be an overbearing dictator, an oppressive boss, (our Lord and Creator) God, and is, in the ensuing period, removed from Heaven. Satan is not portrayed as the embodiment of evil, but instead as a dauntless rebel. Satan rapidly gains a following of demons and dark angels who are drawn to his dynamic nature and ways. In his new-found home of Hell, Satan and his masses begin, to question what can be done to somehow gain control of Heaven, or at least get back at it. It is at this point that we are exposed to Satan's good qualities. The newly crowned Lord of Hell is given all the qualities of a great leader. Satan is influential, courageous, determined, and intellectual. This characterization further endears Satan to the readers. Satan is the protagonist in this novel, not God. Satan is shown in a positive light at every opportunity while God is shown in, not necessarily a negative light but simply not as a positive position. This role and image reversal is critical in Paradise Lost as Satan can be interpreted in a new fashion. .. ...iafra wrote a song entitled "Holiday in Cambodia", which included the verse: Well you'll work harder with a gun in your back For a bowl of rice a day Slave for soldiers till you starve Then your head is skewered on a stake Now you can go where people are one Now you can go where they get things done What you need, my son? Is a holiday in Cambodia Where you'll do what you're told A holiday in Cambodia Where the slum's got so much soul. Bibliography: Berdeja, Cesar. "Francis Ford Coppola's Interpretation of Dracula as a Love Story" April 9, 2002 Biafra, Jello. "Holiday in Cambodia" Give me convenience OR give me death. LP. Alternative Tentacles Records, 1986. Milton, John. Paradise Lost. New York, NY: Penguin Putnam Inc., 1968 "Pol Pot." April 9, 2002 Rodgers, Blake. "Satan and Colonization" April 8, 2002
Saturday, October 12, 2019
Interracial Dating Explored in Save the Last Dance Essay -- Films Movi
Interracial Dating Explored in Save the Last Dance The movie, Save the Last Dance, goes along with all of our discussions and conversations about the visual difference between the black and white cultures and the stereotyping that Hollywood does of the two cultures. The movie shows the difference in the two cultures, according to Hollywood.you have your typical white middle-class suburban girl (Sarah) and your typical low-class black boy (Derrick). Save the Last Dance is a love story about the pros and cons that comes along with interracial dating. Hollywood displays Sarah as your typical white girl whose forced to move into a low-class neighborhood (with her father, Roy), which is inhabited mostly by blacks, after her mother dies in a tragic car accident on her way to one of her audition. The theme of the movie is really plain and simple. Sarah has always wanted to become a ballerina and attend Julliard, a school of performing arts in New York, however, after the death of her mother, she loses the passion for her dream. Like I mentioned above, Sarah was forced to move with her father, Roy, who lived in an old ratty house deep in a ghetto (inhabited mostly by blacks) in New York City. It had to have been a huge culture shock for Sarah, I mean, here is this white middle-class girl who feels that she?s to blame for her mothers death. And in an instant, she?s taken away from her home, neighborhood, and friends and forced to live and attend school in a black ghetto....
Friday, October 11, 2019
Non Conventional energy resources in India Essay
Non-Conventional Energy Resources in India Contents 1. Introductionâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦ 02 2. Wind Energyâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦. 03 3. Biomass Energyâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.. 05 4. Solar Energyâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦. 06 5. Referencesâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦. 11 Page | 1 Introduction Major of Indiaââ¬â¢s energy needs are met out by thermal and other conventional forms. But these are non-renewable in nature. What will happen after say 50 years when the coal gets exhausted? So we need to find an alternative way of extracting energy. In India around 80% of the electricity is got from steam turbines run by coal. With serious concern globally and in India on the use of fossil fuels, it is important for India to start using renewable energy sources. India is the 7th largest country in the world spanning 328 million hectares and amply bestowed with renewable sources of energy. In this paper let us see ï⠷ The various kinds of renewable energy methods present in India. ï⠷ Limitations with the current system. ï⠷ Possible expansion. Our main focus in this paper will be solar energy. We would also see other major players in this field, but we will see the detailed analysis of solar energy extraction and expansion. Page | 2 Wind Energy The development of wind power in India began in the 1990s, and has significantly increased in the last few years. Wind power can be utilized for drawing water, which is an essential requirement in watering agricultural lands in the rural areas. In addition, it can be utilized for electricity generation. Although a relative newcomer to the wind industry compared with Denmark or the US, domestic policy support for wind power has led India to become the country with the fifth largest installed wind power capacity in the world. As of December 2010 the installed capacity of wind power in India was 13,065.37 MW, mainly spread across: 1. Tamil Nadu (4132.72 MW) 2. Maharashtra (1837.85 MW) 3. Karnataka (1184.45 MW) 4. Rajasthan (670.97 MW) 5. Gujarat (1432.71 MW) 6. Andhra Pradesh (122.45 MW) 7. Madhya Pradesh (187.69 MW) 8. Kerala (23.00 MW) 9. West Bengal (1.10 MW) 10. Other states (3.20 MW) It is estimated that 6,000 MW of additional wind power capacity will be installed in India by 2012. Wind power accounts for 6% of Indiaââ¬â¢s total installed power capacity, and it generates 1.6% of the countryââ¬â¢s power. Page | 3 The major drawbacks of this power system are as follows: ï⠷ Electricity production depends on- wind speed, location, season and air temperature. Hence various monitoring systems are needed and may cost expensive. ï⠷ High percentage of the hardware cost (for large WT) is mostly spent on the tower designed to support the turbine ï⠷ The total cost can be cheaper than solar system but more expensive than hydro. The state and central governments are providing various subsidies and have come up with new policies to enhance the wind power generation in India. Wind turbines are becoming larger, efficiencies and availabilities are improving and wind farm concept is becoming popular. It could be combined with solar, especially for a total self-sustainability project. The economics of wind energy is already strong, despite the relative immaturity of the industry. The downward trend in wind energy costs is predicted to continue. As the world market in wind turbines continues to boom, wind turbine prices will continue to fall. Page | 4 Biomass Energy Among the renewable energy sources, biomass plays a vital role especially in rural areas, as it constitutes the major energy source to majority of households in India. Biomass energy is the utilization of organic matter present and can be utilized for various applications. ï⠷ Biomass can be used to produce heat and electricity, or used in combined heat and power (CHP) plants. ï⠷ Biomass can also be used in combination with fossil fuels (co-firing) to improve efficiency and reduce the buildup of combustion residues. ï⠷ Biomass can also replace petroleum as a source for transportation fuels. Recent developments in India: ï⠷ India produces about 450-500 million tons of biomass per year, which is 32% of all the primary energy use in the country at present. ï⠷ The current share of biofuels in total fuel consumption is extremely low and is confined mainly to 5% blending of ethanol in gasoline, which the government has made mandatory in 10 states. Biomass energy can play a major role in reducing Indiaââ¬â¢s reliance on fossilà fuels by making use of thermo-chemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, creating new job opportunities, sustainable development and health improvements in rural areas. The integration of biomass-fuelled gasifies and coal-fired energy generation would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability with lower investment costs. Page | 5 Solar Energy Solar energy is genesis for all forms of energy. This energy can be made use of in two ways the Thermal route i.e. using heat for drying, heating, cooking or generation of electricity or through the Photovoltaic route which converts solar energy in to electricity that can be used for a myriad purposes such as lighting, pumping and generation of electricity. With its pollution free nature, virtually inexhaustible supply and global distribution- solar energy is very attractive energy resource. There are two different perspectives in utilizing solar energy: 1. Solar for grid connected electricity: Grid interactive solar energy is derived from solar photovoltaic cells and CSP Plants on a large scale. The grid connection is chosen due to following reasons: ï⠷ Solar Energy is available throughout the day which is the peak load demand time ï⠷ Solar energy conversion equipment have longer life and need lesser maintenance and hence provide higher energy infrastructure security ï⠷ Low running costs & grid tie-up capital returns (Net Metering) ï⠷ Unlike conventional thermal power generation from coal, they do not cause pollution and generate clean power. ï⠷ Abundance of free solar energy throughout all parts of world (although gradually decreasing from equatorial, tropical, sub-tropical and polar regions). Can be utilized almost everywhere. 2. Solar for off-grid solutions: While, the areas with easier grid access are utilizing grid connectivity, the places where utility power is scant or too expensive to bring, have no choice but to opt for Page | 6 their own generation. They generate power from a diverse range of small local generators using both fossil fuels (diesel, gas) and locally available renewable energy technologies (solar PV, wind, small hydro, biomass, etc.) with or without its own storage (batteries). This is known as off-grid electricity. Remote power systems are installed for the following reasons: ï⠷ Desire to use renewable ââ¬â environmentally safe, pollution free. ï⠷ Combining various generating options available- hybrid power generation. ï⠷ Desire for independence from the unreliable, fault prone and interrupted grid connection. ï⠷ Available storage and back-up options. ï⠷ No overhead wires- no transmission loss. ï⠷ Varied applications and products: Lighting, Communication Systems, Cooking, Heating, Pumping, Small scale industry utilization etc. The technologies present in harvesting solar power are: 1. Solar photovoltaic: Solar photovoltaic (SPV) cells convert solar radiationà (sunlight) into electricity. A solar cell is a semi-conducting device made of silicon and/or other materials, which, when exposed to sunlight, generates electricity. Solar cells are connected in series and parallel combinations to form modules that provide the required power. These are the different solar cells used: ï⠷ Crystalline Silicon solar cells (C-Si): Monocrystalline and Polycrystalline. ï⠷ Thin-film solar cells: Amorphous Silicon Solar cells (A-Si), CIGS, CdTe. PV modules are manufactured by assembling the solar cells after stringing, tabbing and providing other interconnections. Page | 7 2. Solar thermal: Solar Thermal Power systems, also known as Concentrating Solar Power systems, use concentrated solar radiation as a high temperature energy source to produce electricity using thermal route. High temperature solar energy collectors are basically of three types: ï⠷ Parabolic trough system: at the receiver can reach 400à ° C and produce steam for generating electricity. ï⠷ Power tower system: The reflected rays of the sun are always aimed at the receiver, where temperatures well above 1000à ° C can be reached. ï⠷ Parabolic dish systems: Parabolic dish systems can reach 1000à ° C at the receiver, and achieve the highest efficiencies for converting solar energy to electricity. This is the next big leap in the energy sector, but this too has its own limitations such as: ï⠷ Initial cost involved in setting up the plant is high. Also a huge amount of space is required. ï⠷ Proper sunlight is required for these systems to work effectively and efficiently. ï⠷ On a cloudy day or during nights and rainfall, this system fails to produce power, thus requiring a backup power plan, so this cannot be completely relied upon. ï⠷ Many solar grids are setup in desert areas where no grids are present, making it costly to transmit. ï⠷ Maintenance cost is quite high and a specialized technician is required for it. Page | 8 There may be some difficulties and limitations in this field, many of which can be rectified by proper government involvement during large scale implementations. India needs a brisk involvement in this field considering the facts that: ï⠷ We get plenty of sunlight due to its proximity to the equator and we receive an annual average of 4-7KWh per day for every square meter, meaning we receive a lot more sunlight than what we can use in a year, making it an abundant source of power. ï⠷ We are a poor source for conventional fuel sources. We are dependent on the Gulf countries for its oil supplies. With the oil prices skyrocketing and the reluctance of the Indian government to hike the prices of LPG and kerosene, Indian oil companies are suffering major losses. Even electricà supply in the country is unable to meet the burgeoning demands of the growing population and businesses. ï⠷ India does not have resources to pay the huge bills of the oil producers. Now there are many researches going on in this field to increase the output as well as store the produced energy in SPV cells. Also many conventional coal thermal power plants are looking forward to installing the solar thermal plant to pre heat the water to reduce the use of coal, which is an effective way to cut down the use of coal. New grids and easier and cheaper ways of power transmission are being considered owing to the fact that a huge loss in power as well as money is involved in long range transmission of this produced power. The state governments are coming up with new policies to increase their capacity and mend out their acute power crisis. For e.g., the Government of Tamil Nadu has recently unveiled its new Solar Energy Policy which aims at increasing the installed solar capacity from the current approximate of 20 MW to over 3000 MW Page | 9 by 2015. The policy aims at fixing a 6% solar energy requirement on industries and residential buildings for which incentives in the form of tax rebates and current tariff rebates of up to Rs.1 / unit will be applicable to those who comply with the Solar Energy Policy. The policy also gives an option to those industries/buildings who do not want to install rooftop solar photo-voltaic systems to invest in the governmentââ¬â¢s policy and be given the same incentives as explained above. Even many private players are slowly but steadily coming up in this sector, knowing its future value. Government is providing subsidies and aid to these private companies to increase their involvement in this sector. Solar Power India, Tata and Reliance Industries are some of the big money players who have major plans for this industry. This will give a big boost to this field as these companies can invest a lot of money in research to make the technology cheaper. This, in turn, will make solar energy accessible to the common man. As more and more people take to solar power, the costs are expected to reduce. Page | 10 References 1. ââ¬Å"Future Perspectives for Renewable Energy in Indiaâ⬠, November 21st 2008, Ravi Soparkar, 2. India Wind Energy, (EAI), < http://www.eai.in/ref/ae/win/win.html> 3. India Biomass Energy, (EAI),< http://www.eai.in/ref/ae/bio/bio.html> 4. India Solar energy, (EAI),< http://www.eai.in/ref/ae/sol/sol.html> 5. ââ¬Å"Solar energy: Watts Upâ⬠, January 06th 2013, K.R.Balasubramanyam, < http://businesstoday.intoday.in/story/the-future-of-solar-power-inindia/1/190741.html> Page | 11
Thursday, October 10, 2019
Strategic Information System â⬠Current Issues
our site ââ¬â CUSTOM ESSAY WRITING ââ¬â PUBLIC HEALTH DISSERTATION TOPICS Expanding Access to Healthcare According to the World Health Organization (2011), the main challenges of health care systems are related to managing competing demands and multiple objectives. Building effective Strategic Information Systems can help health care providers expand coverage to rural areas, and overcome barriers of access through finding alternative methods of information exchange and delivery. Opportunities Ngafeeson (2014) lists the main opportunities of strategic information systemsââ¬â¢ application in healthcare as follows: Biomedical research Developing prevention and treatment standards Care delivery Linking national and regional registries Decision-support Challenges Blumenthal (2009) states that the resistance in the profession is the main barrier of SIS integration. Further challenges listed by Ngafeeson (2014) are: Lack of integration among systems Confusing standards Lack of well-developed exchange systems Cost restraints Potential Benefits The main potential benefits of SIS on the health care system to successfully deal with demographic challenges are: Accessibility (rural residentsââ¬â¢ access to care) Cost savings Improved quality of care Education opportunities remotely Collaboration among departments (Rudowski 2008). Emerging Themes Clinical decision support systems can support primary care providers (Berner 2009) Rural access improvement through ââ¬Å"internet doctorâ⬠services (Wood 2004) Data mining capability building to develop knowledge about trends (Ngafeeson 2014) Instant collaboration methods development Current Initiatives Chronic Disease Management Program in New Zealand helped deliver adequate diabetes control (Rudowski 2008) transmission of ECG signal directly from the ambulance to invasive cardiology centre (Rudowski 2008) Teleradiology Application of SIS in Health Care Berner (2009) lists possible areas of adaptation as: Preventive care (identifying risk populations) Diagnosis (database updates) Treatment plans (guidelines, templates) Cost reduction (duplicate test alert, for example) Follow-up management (alerts) (Berner 2009). Future Outlook and Research Hoque, Hossin, and Khan (2016) states that Strategic Information Systems Planning (SISP) will benefit developing countries more. The authors also define different stages of SISP: Strategic awareness Situation analysis Strategy conception Strategy formulation Strategy implementation SIS Challenges Difficulty to secure commitment Need for training and development Lack of IT support Underdeveloped technological environment IT leader selection and recruitment Issues with implementation and project management (Hoque, Hossin, and Khan 2016) Conclusion Several opportunities exist in improving health care access, diagnosis accuracy, and information flow in the health care system, related to the development of SIS. The main barriers of implementation were found to be lack of training opportunity, personnel resistance, and lack of IT leadership. References Berner, E.S., 2009. Clinical decision support systems: state of the art. AHRQ publication, 90069. Hoque, M.R., Hossin, M.E. and Khan, W., 2016. Strategic Information Systems Planning (SISP) Practices In Health Care Sectors Of Bangladesh. European Scientific Journal, 12(6). Ngafeeson, M.N., 2015. Healthcare Information Systems Opportunities and Challenges. In Encyclopedia of Information Science and Technology, Third Edition (pp. 3387-3395). IGI Global. Rudowski, R., 2008. Impact of Information and Communication Technologies (ICT) on Health Care. Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Poland. WHO. Organisation for Economic Co-operation and Development, 2011. A System of Health Accounts 2011. Organisation for Economic Co-operation and Development. Wood, J., 2004. Rural health and healthcare: A north west perspective. Institute for Health Research, Lancaster University.
Wednesday, October 9, 2019
Admissions essay
ââ¬Å"l want to become the greatest engineer in the worldâ⬠, said a 5 year old boy named Phone. That seemed to be a little dream of a child which he would forget soon. However, for 1 1 years since his saying, that boy had been still continuously following his dream. With remarkable ability of science, Phone was admitted to the physics department of HUSH High School for Gifted Students.In there, he got to know about Nanning Technological university from a senior. Phone was very impressed by the way this university inspired students and its extremely competitive educational environment. His love for .NET started then. Therefore, he challenged himself on the university entrance examination of .NET. Unfortunately, he was rejected. It was the very first big failure and Phone was deeply shocked. He avoided everyone and became more reserved.However, his passion was greater than anything else. Phone quickly overcame this grief, and started acquiring knowledge, to provide himself anothe r chance in the following year. Len addition to participation in an intense A-level program, he also did not forget to improve his soft skills and social knowledge by spending time on some extra-curricular activities such as movie making, volunteering ND being a technician for some events.Thanks to his efficient working method, Phone obtained a few amount of achievements like becoming an youth partner, and a film producer of a volunteer group. Those experiences, which made him more optimistic, sociable, responsible became unforgettable memories In his life. At this moment, when you are reading this essay, Phone had succeeded In completion of his changeable and had a great time before becoming a student In his dream university. I believe that as long as he maintains his passion, he can successfully pilot his own life. Admissions Essay After serious investigation and reflection I am convinced my educational goals will be far better achieved at NYU than at any other university. It is not an easy decision for me, as I thoroughly enjoyed my time at Villanova and made the most of it. One of the many wonderful concepts I have learned from my parents is to strive for academic excellence while balancing life with other activities and contributions. I am proud of my academic record at Villanova, as well as my extracurricular involvement in campus activities, part-time employment and community service. Through the efforts of my parents I have enjoyed a great deal of cultural and educational diversity. I was born and raised in Taiwan, and moved with my parents to Shanghai, China, where I attended high school. Within a very short time I advanced from speaking virtually no English to first place in my class, and then on to Advanced Placement classes. My secondary education in Shanghai was instrumental in the development of my interest in business and finance, and my goal is to be become expert in the area of financial analysis. NYU is a perfect match for me. NYU Stern is one of the finest business schools and enjoys a global reputation. I have learned from my parents two ââ¬Å"lawsâ⬠: the law of learning and the law of giving. I believe the more you learn the more open you become for learning. I am convinced NYU Stern is a great fit for ââ¬Å"the law of learningâ⬠and by achieving academic excellence at NYU I will be in a position to choose career opportunities for continued growth not available at any other university. I have learned from my parents the critical importance of the law of giving, and I am both attracted and committed to the Stern model of community service, particularly that ââ¬Å"students apply business skills to effect social change.â⬠I will bring to NYU a variety of assets and commitments. I have benefited in the past from having ââ¬Å"mentorsâ⬠, particularly in Shanghai, and I look forward to being able to mentor Chinese and Asian students at NYU. I have always been committed to community service and campus government, and plan on continuing these important activities. I will bring to the campus what others have considered in me an infectious ââ¬Å"joy of learning, excitement for the future, and need for world contribution.â⬠That is in essence my philosophy and I believe it will contribute to the NYU community. The time is right in my life to appreciate and take full advantage of all that NYU offers. I look forward to being a part of a university which has the city itself as part of the campus. While touring NYU I felt at once comfortable and energized, I feeling I never had at Villanova or any other university I have visited. I am fully aware of the significance of being considered for acceptance, and I am sincerely grateful for your time and consideration of my application. Admissions Essay After serious investigation and reflection I am convinced my educational goals will be far better achieved at NYU than at any other university. It is not an easy decision for me, as I thoroughly enjoyed my time at Villanova and made the most of it. One of the many wonderful concepts I have learned from my parents is to strive for academic excellence while balancing life with other activities and contributions. I am proud of my academic record at Villanova, as well as my extracurricular involvement in campus activities, part-time employment and community service. Through the efforts of my parents I have enjoyed a great deal of cultural and educational diversity. I was born and raised in Taiwan, and moved with my parents to Shanghai, China, where I attended high school. Within a very short time I advanced from speaking virtually no English to first place in my class, and then on to Advanced Placement classes. My secondary education in Shanghai was instrumental in the development of my interest in business and finance, and my goal is to be become expert in the area of financial analysis. NYU is a perfect match for me. NYU Stern is one of the finest business schools and enjoys a global reputation. I have learned from my parents two ââ¬Å"lawsâ⬠: the law of learning and the law of giving. I believe the more you learn the more open you become for learning. I am convinced NYU Stern is a great fit for ââ¬Å"the law of learningâ⬠and by achieving academic excellence at NYU I will be in a position to choose career opportunities for continued growth not available at any other university. I have learned from my parents the critical importance of the law of giving, and I am both attracted and committed to the Stern model of community service, particularly that ââ¬Å"students apply business skills to effect social change.â⬠I will bring to NYU a variety of assets and commitments. I have benefited in the past from having ââ¬Å"mentorsâ⬠, particularly in Shanghai, and I look forward to being able to mentor Chinese and Asian students at NYU. I have always been committed to community service and campus government, and plan on continuing these important activities. I will bring to the campus what others have considered in me an infectious ââ¬Å"joy of learning, excitement for the future, and need for world contribution.â⬠That is in essence my philosophy and I believe it will contribute to the NYU community. The time is right in my life to appreciate and take full advantage of all that NYU offers. I look forward to being a part of a university which has the city itself as part of the campus. While touring NYU I felt at once comfortable and energized, I feeling I never had at Villanova or any other university I have visited. I am fully aware of the significance of being considered for acceptance, and I am sincerely grateful for your time and consideration of my application.
Tuesday, October 8, 2019
Write course preparation Coursework Example | Topics and Well Written Essays - 250 words
Write course preparation - Coursework Example The digital labor as part of the much wider development comprises of union busting, globalization, casualization, deregulation, and the proletarianization of professions. In a sharing economy the labor of people is shared in a way that seems feudal. These new work arrangements shift the power in the labor market away from the workers. According to Roose, the sharing economy yields utopian outcomes with the empowerment of the ordinary people and increasing efficiency. The on-demand economy reduces full-time employment in addition to reducing the working in a bid to control the carbon emissions. I would not work in firms like Uber because I want to work as a full-time employee. This makes these jobs less appealing than the standard jobs. Due to the rapid growth of human population, especially in the cities, this creates more opportunities for sharing resources and services (Gold 28). However, most of the firms in the sharing economy are having an uneasy time with the regulators. Platforms such as Uber are experiencing explosive growth, which, in turn, has resulted in political and regulatory battles. Therefore, I would advise the sharing economy firms to be cooperative with regulators and also be responsive to the regulatorsââ¬â¢ legitimate concerns. It is also difficult to evaluate the effect of these new earning opportunities because they are introduced during a period of rapid labor market restructuring and high unemployment rates. Consider taxis, drivers in conventional cab operations are protesting due to Uberââ¬â¢s unfair competition which impacts negatively on their operations. The cab drivers are charged extra such as lease space and insurance while Uber deals with uninsured passengers compromising the safety of the passengers. All workers have equal opportunities to participate in these markets. Therefore, Uber drivers need to be subjected to same licensing, inspection, and regulations that cab drivers are subjected. It operates like
Subscribe to:
Posts (Atom)